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Spin-orbit interactions which couple the spin of a particle with its momentum degrees of freedom lie at the
center of spintronic applications. Of special interest in semiconductor physics are Rashba and Dresselhaus
spin-orbit coupling. When equal in strength, the Rashba and Dresselhaus fields result in SU(2) spin rotation
symmetry and emergence of the persistent spin helix only investigated for charge carriers in semiconductor
quantum wells. Recently, a synthetic Rashba-Dresselhaus Hamiltonian was shown to describe cavity photons
confined in a microcavity filled with optically anisotropic liquid crystal. In this Letter, we present a purely
optical realization of two types of spin patterns corresponding to the persistent spin helix and the Stern-
Gerlach experiment in such a cavity. We show how the symmetry of the Hamiltonian results in spatial
oscillations of the spin orientation of photons traveling in the plane of the cavity.
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The stability of a number of interesting phenomena in
physical systems can be explained as a consequence of
certain underlying symmetries that are robust to perturba-
tions. Out of many examples in solid-state physics, one
that in recent years has attracted a great deal of attention is
the persistent spin helix protected by an unusual SU(2)
symmetry [1]. It emerges in two-dimensional semiconduc-
tors exhibiting Rashba and Dresselhaus spin-orbit coupling
(SOC) of equal magnitudes. The persistent spin helix
(PSH) is characterized by a spatially periodic spin texture
of the SOC particles which become robust against spin-
dependent scattering, with spin relaxation suppressed. So
far, this effect has been experimentally demonstrated in
many implementations [2–9]. It was first observed through
transient spin-grating spectroscopy [2], then directly
mapped in an optical Kerr rotation experiment [3].
In the context of SOC of light [10], a rapidly growing field

of research, there has been so far no implementation of a

photonic PSH to protect the polarization state of light. Today,
SOC of light has led to remarkable results aiming to study
well-known concepts in solid-state electronic systems but in a
new optical context. This has contributed to the development
of exciting areas of study such as topological photonics [11],
nontrivial and singular polarization textures [12,13], optical
spin-based metamaterials [14], valleytronics [15,16], and
synthesizing artificial gauge fields in photonic lattices [17].
In this Letter, we realize both a photonic PSH as well as

an optical Stern-Gerlach experiment using a liquid crystal-
filled multimode cavity. By tuning two modes of opposite
parity and polarization into resonance in this highly
anisotropic cavity, their mixing becomes described by an
effective equal Rasha-Dresselhaus SOC, resulting in a
dispersion with strong valley polarization [18]. Our exper-
imental observations and analytical calculations demon-
strate that the strong polarization-valley coupling in this
simple system directly results in the appearance of long-
range polarization [or (pseudo)spin] textures of the in plane
traveling photons with potential application for valley-
optronic devices [19–21] alongside gapped Dirac materials.
In Rashba-Dresselhaus SOC conditions the polarization of
light depends only on the distance traveled along one
direction and not on the initial momentum; thus, parallel
stripes of linear polarization are formed.
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We use a microcavity filled with a liquid crystalline
medium shown schematically in Fig. 1(a). The cavity is
based on two SiO2=TiO2 distributed Bragg reflectors
(DBRs), with maximum reflectance at 1.65 eV (750 nm).
Approximately 3.5 μm gap between the DBRs is filled with
a nematic liquid crystal of high birefringence (Δn ¼ 0.41
[22,23]), which acts as an optically uniaxial medium inside
a multimode cavity. By tuning an external voltage applied
to transparent ITO electrodes, we can control the anisotropy
direction in the x-z plane [Fig. 1(a)], which changes the
effective refractive index and thus the cavity mode energy
for light polarized in the x direction, whereas modes of
perpendicular polarization are unaffected [24]. If the
refractive indices for perpendicular linear polarizations
are different, then degeneration of two modes with different
numbers is possible. When two modes of opposite parities
are degenerate, they couple via the Rashba-Dresselhaus
SOC term, and the dispersion can be described by an

effective Hamiltonian written in the photon circular polari-
zation basis (i.e., spin-up and spin-down states) [18]:

Ĥ ¼ ℏ2k⃗2

2m
− 2ασ̂zky; ð1Þ

which is the same as considered by Bernevig et al. in [1].
Here, k⃗ ¼ ðkx; kyÞ is the cavity in plane momentum, and σ̂z
is the third Pauli matrix. The above Hamiltonian can be
regarded as a consequence of emergent chirality, or optical
activity, in the structure which—alongside other SOC
mechanisms—leads to nontrivial band geometry [25]. It
is worth mentioning that the form of the term linear in k is
induced by the symmetry of the problem, and in this sense,
it is robust (see the Supplemental Material in [18]).
The Rashba-Dresselhaus SOC dispersion was achieved

when 2.12 V AC voltage was applied to the sample.
Dispersion relation of photons confined in the cavity can
be mapped directly through angle-resolved reflectance
spectra, as shown in Fig. 1(b). The dispersion for wave
vectors along the y direction shows two off-centered spin-
polarized parabolas (or valleys), where the constant energy
cross section consists of two spin circles off-centered by
momentum Q⃗ ¼ 4mα=ℏ2ŷ [Fig. 1(c)], with blue and red
colors denoting spin-down and spin-up states, and yellow
arrows indicating the effective momentum-dependent out-
of-plane magnetic field. Fitting Eq. (1) to the dispersion
gives a Rashba parameter α ¼ 2.8 × 10−3 eV μm and
effective mass m ¼ 1.1 × 10−5me where me is the free
electron rest mass. The angle-resolved reflectance spectra
was also simulated numerically using the Berreman
method [26,27]. The results of such simulations for a
liquid crystal (LC) layer width of 3.1 μm with molecules
rotated by θ ¼ 53.3° are compared with the experiment
in Fig. 1(b).
Interestingly, one can consider the equal Rashba-

Dresselhaus SOC system as a spin realization of
Young’s double slit experiment in a reciprocal space.
The role of the two slits discriminating the position of
an incident scalar plane wave in the real space—resulting in
the well-known double-slit spatial interference pattern in
the far field—is instead played by the two cavity dispersion
spin valleys in reciprocal space discriminating the momenta
of light through an optical mode [Fig. 1(c)]. In the double-
slit experiment a plane wave passing through two slits
(separated by distance d) produces spherical waves that
interfere, giving an image of the intensity oscillating in
space with a period proportional to 1=d [Fig. 2(a)].
Analogously, for a homogeneous occupation of the two
isoenergy spin circles in the reciprocal space, separated by
the vector Q⃗, we would obtain in real space a polarization
interference image producing the persistent spin helix with
a period proportional to L ¼ 2π=Q where Q ¼ jQ⃗j. In
other words, in the Young’s double slit experiment, one
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FIG. 1. The effect of liquid crystal birefringence tuning.
(a) Scheme of the cavity filled with nematic liquid crystal. With
external voltage applied to LCMC, the mean orientation of LC
molecules tilts in the x-z plane. (b) Angle-resolved reflectance
spectra in y direction for Rashba-Dresselhaus resonance in
LCMC: experiment and Berreman matrix simulation. Blue and
red dashed lines mark fitted Rashba-Dresselhaus dispersion
relation for spin-up and spin-down photons, respectively. Dashed
horizontal line marks energy of the laser used for resonance
transmission measurements. (c) Constant energy cross section
through Rashba-Dresselhaus dispersion relation which consists
of two circularly polarized circles off centered by Q⃗ (green
arrow). Yellow arrows denote the effective SOC magnetic field
given by the last term in Eq. (1). (d) Schematic illustration of
persistent spin helix spin texture with period L ¼ 3.8 μm.
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obtains in the far field the Fourier transform of the two slits,
which is a periodic interference pattern. Here, we obtain in
the near field the Fourier transform of the two polarized
circles in momentum space, which is a linear polarization
interference pattern. Based on the fitted dispersion in
Fig. 1(b) this leads to a helix period of L ¼ 3.8 μm
[Fig. 1(d)].
This change of the polarization with propagation of

photons in the plane of the cavity is observed experi-
mentally in our system. An incident linearly antidiago-
nally polarized laser beam is tightly focused with a
microscope objective (100 × magnification, 0.55 numeri-
cal aperture) on the sample, providing homogeneous
occupation of photons on both spin circles in reciprocal
space. The laser energy is set resonant with the cavity
modes at normal incidence as marked by a dashed
horizontal line in Fig. 1(b). Transmitted light is collected
by another microscope objective, and polarization is
resolved and imaged on a camera. This allows us to
map out the spatial distributions of the S1 ¼ ðIX −
IYÞ=ðIX þ IYÞ and S2 ¼ ðId − IaÞ=ðId þ IaÞ and S3 ¼
ðIσþ − Iσ−Þ=ðIσþ þ Iσ−Þ Stokes parameters, corresponding
to intensities of horizontal (IX), vertical (IY), diagonal
(Id), antidiagonal (Ia), right-hand circular (Iσþ), and left-
hand circular (Iσ− ) polarized light.
The measured S1 and S2 parameters are plotted in

Figs. 2(c) and 2(f), which clearly show periodic oscillations
with a π=2 phase shift between the two Stokes parameters.
The spatial period of the oscillations is estimated as
L ¼ 4.7 μm. The phase of the PSH depends on the
polarization of incident light, as described in the
Supplemental Material [28].
As mentioned above, this result can be understood as a

consequence of an interference process between spins in
different momentum valleys (i.e., valley polarization). It is
worth mentioning another type of photonic SOC inherent
to planar microcavities—known as the optical spin Hall
effect—which comes from different transmission and
reflection properties of TE and TM polarized modes of
the same mode number [12,24]. It also leads to spatially
beating polarization patterns due to the different
effective masses of the linearly polarized modes but is
inherently nonchiral, and thus very different in origin
from Eq. (1) whose eigenmodes are circularly polarized.
Assuming that the cavity extends infinitely in the
x-y plane with the two almost perfect mirror planes
separated by distance L, we can represent the modal
electric fields inside the cavity, corresponding to the
eigenvalues ε�ðk⃗Þ ¼ ℏ2=2mðk⃗ ∓ Q⃗=2Þ2 − ð2mα2=ℏ2Þ of
the Hamiltonian [Eq. (1)] by the plane waves:

Ψ�
k⃗
ðr⃗; zÞ ¼

"
EX

EY

#
�
¼ eik⃗·r⃗

" 1
nx
sinMπz

L

∓i
ny
sin Nπz

L

#
: ð2Þ

Here nx and ny represent the refractive indices for linear
polarizations in x and y directions, respectively, and M, N
denote the degenerate longitudinal cavity mode numbers
of opposite parity, i.e., M ¼ N � 1. The electric field of
the modes Ψ�

k⃗
in the vicinity of the mirrors is right- or left-

hand circularly polarized with respect to the normal vector
pointing outside the cavity plane. So a plus sign corre-
sponds to an outgoing wave with σ⃗þ ¼ 1=

ffiffiffi
2

p ½1; i�T
polarization vector, and the minus sign corresponds to
an outgoing wave with the σ⃗− ¼ 1=

ffiffiffi
2

p ½1;−i�T polariza-
tion vector on either side of the cavity. The planar
symmetry of the cavity implies that incident electromag-
netic waves of energy ε and momentum k⃗ will excite
modes ε�ðk⃗Þ. A linearly polarized incident plane wave
with the polarization angle Θ ¼ 1

2
tan−1 ðS2=S1Þ with

respect to the x axis will excite either eþiΘΨþ or
e−iΘΨ− waves inside the cavity, provided k⃗ belongs to
the red or blue circle in Fig. 1(c). Therefore the
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FIG. 2. All-optical persistent spin helix state. (a) Schematic of
Young’s double slit experiment. (b) Schematic of the reciprocal
spin-valley interference experiment. (c),(f) Experimental spatial
S1 and S2 Stokes parameters of the light transmitted through the
cavity under tightly focused monochromatic antidiagonally
polarized incident light. (d),(g) Corresponding patterns calculated
from the analytical formula [Eq. (5)], and (e),(h) from Schrö-
dinger equation simulation of Eq. (1).
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transmitted light will be either right-hand or left-hand
circularly polarized. If, however, the surface of the micro-
cavity is illuminated with a focused coherent beam at
normal incidence, then the entire isoenergy momentum
spin circles are excited, and a specific polarization pattern
determined by Θ, as a manifestation of the optical PSH,
will emerge. Let F denote the distance between the focus
of the incident beam and the illuminated surface. The
electric field at this surface is a combination of plane
waves (up to a common factor):

E⃗in ∼
Z

d2k
ð2πÞ2 e

ik⃗·r⃗eiR
2k2
�
cosΘ
sinΘ

�
; ð3Þ

where R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
F=2k0

p
and k0 is equal to the light wave

number in the vacuum. Taking into account that each of those
plane waves couples either to the field eþiΘΨþ or e−iΘΨ−

inside the cavity and performing the integral with respect
to k⃗ one arrives at the final expression for the electric
field of the transmitted wave at the opposite surface.
Denoting ϕ�ðr⃗Þ≜J 0ðξ�Þ, where J 0ðξ�Þ is the
Bessel function of zeroth order and ξ�ðr⃗Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=ℏ2ðEþ ð2mα2=ℏ2ÞÞ

p
jr⃗� R2Q⃗j, we obtain

E⃗out ∼ ei½ðQ⃗=2Þ·r⃗þΘ�ϕþðr⃗Þσ⃗þ þ e−i½ðQ⃗=2Þ·r⃗þΘ�ϕ−ðr⃗Þσ⃗−: ð4Þ

This expression exemplifies the so-called classical entan-
glement, while some authors find such terminology
misleading [29], between the planar position and the
polarization of the electric field [30]. Or alternatively,
we have created an inseparable state between the valley
�Q⃗=2 and polarization σ⃗� degrees of freedom (d.o.f.) of
the cavity photons. The spatial polarization pattern of the
solution [Eq. (4)] can be represented by the components of
the normalized Stokes vector,

S1 ¼
2ϕþðr⃗Þϕ−ðr⃗Þ

ϕþðr⃗Þ2 þ ϕ−ðr⃗Þ2
cosðQ⃗ · r⃗þ 2ΘÞ;

S2 ¼ −
2ϕþðr⃗Þϕ−ðr⃗Þ

ϕþðr⃗Þ2 þ ϕ−ðr⃗Þ2
sinðQ⃗ · r⃗þ 2ΘÞ;

S3 ¼
ϕ−ðr⃗Þ2 − ϕþðr⃗Þ2
ϕþðr⃗Þ2 þ ϕ−ðr⃗Þ2

: ð5Þ

The analytical results [Eq. (5)] are plotted in Figs. 2(d)
and 2(g) for Θ ¼ −π=4, which agree with the experi-
mental data obtained using antidiagonally polarized
incident light. More strict analytical calculations taking
into account the Gaussian profile of the focused beam
do not change significantly the above conclusions.
Additionally, we perform Schrödinger equation simula-
tions iℏ∂tΨ ¼ Ĥð−i∇ÞΨþ f⃗ðr⃗Þ driven by a normally
incident antidiagonally polarized narrow Gaussian field

f⃗ðr⃗Þ ¼ e−r
2=ð2w2Þ½eiπ=4;−e−iπ=4�T under open boundary

conditions [28]. The results are shown in Figs. 2(e)
and 2(h) in good agreement with the experiment and
analytical theory. We note that the additional polarization
circles appearing in Figs. 2(d) and 2(g) come from the
focused incident light which picks up a spatially varying
phase front, whereas in the Schrödinger simulations a
driving field f⃗ðr⃗Þ with flat phase front is used.
Our results open several new exciting perspectives in

photonics. The so-called classically entangled d.o.f.
between the cavity dispersion valleys and the photon
spin offer a transparent and easy way to create insepa-
rable photonic states [31]. Indeed, by controlling the
polarization of the incident optical beam defined as
σ⃗in ¼ βþσ⃗þ þ β−σ⃗−, where jβþj2 þ jβ−j2 ¼ 1, one can
write Eq. (4) as a function of two control variables,

E⃗outðβ�Þ ∼ βþei
Q⃗
2
·r⃗ϕþðr⃗Þσ⃗þ þ β−e−i

Q⃗
2
·r⃗ϕ−ðr⃗Þσ⃗−: ð6Þ

It then becomes apparent that a family of inseparable states
exists which satisfy jβþj ¼ jβ−j and βþ=β− ¼ e2iΘ. Similar
to a Michelson interferometer, Θ is an effective “path-
difference” variable which uniquely determines the location
of the S1;2ðr⃗Þ interference minima and maxima in the PSH
[see the Supplemental Material and Eq. (5)]. This reflects
the fact that, for an inseparable state, any effects on one
d.o.f. (e.g., spin) will have measurable outcome in the other
d.o.f. (e.g., momentum valley) with exciting potential in
optical metrology that benefits from parallelized d.o.f.
measurements [32].
In the case of a tightly focused pump, as considered

above, one has ϕþðr⃗Þ ≃ ϕ−ðr⃗Þ, and the amount of
nonseparability can be quantified as a global parameter
C ¼ 2jβþβ−j where 0 ≤ C ≤ 1 [33]. When C ¼ 1 the
system is maximally inseparable, whereas when C ¼ 0
the spin and valley degrees of freedom are completely
separable. Analogous to the double slit experiment, where
one can control the intensities of light passing through each
slit affecting the interference pattern, setting C < 1
describes different amounts of photons in the two circularly
polarized components of light resulting in imbalanced
occupation of the two valleys. In the more general case
where ϕþðr⃗Þ ≠ ϕ−ðr⃗Þ [causing the interference circles in
the S1;2 in Figs. 2(d) and 2(g)] the amount of inseparability
is no longer a global quantity and depends on the spatial
coordinate r⃗. In this case the S3ðr⃗Þ Stokes parameter
becomes a useful measure of the amount of inseparability
in space written as C2 þ S23 ¼ 1, which is an analog of
complementarity proposed by Eberly et al. [34].
Moreover, scrutinizing the S3ðr⃗Þ parameter we can

demonstrate analogy of left- and right- hand circularly
polarized light separation to an optical Stern-Gerlach
experiment [35] using our system. The effective magnetic
field of the equal Rasha-Dresselhaus SOC causes a
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spin-selective deflection of the cavity photons along the
two opposite directions in the cavity plane defined by the
valleys’ location �Q⃗=2 [Fig. 1(c)]. This deflection appears
due to the different Bessel solutions for σ⃗þ and σ⃗− which
are shifted due to the anisotropy of the dispersion. This can
be evidenced for the linearly polarized case C ¼ 1. For
nonhomogeneous occupation of dispersion cavity valleys
[Fig. 3(b)] we observe that S3ðx; yÞ ¼ −S3ðx;−yÞ as
indicated theoretically in Fig. 3(c) and experimentally in
Fig. 3(d). Such nonhomogeneous occupation of the valleys
can be achieved by using a broad normal incident excitation
beam which only excites a locality in reciprocal space
around k ¼ 0. In the experiment presented in Fig. 3(d) we
used linearly polarized (diagonal) light from a broadband
halogen lamp transmitted through the sample by the same
optical system. To filter energy of Rashba-Deresselhaus
resonance we performed a tomography measurement by the
motorized movement of a lens imaging light transmitted
through the sample on the entrance slit of a monochromator
equipped with a CCD camera. Our results therefore open a
new method to design an optical Stern-Gerlach experiment
in the classical optics regime. The notable difference
between our setup and the actual Stern-Gerlach is that
there is no constant force acting on the photon pseudospins

but rather, they obtain constant group velocities in opposite
directions in the cavity due to the effective magnetic force
gradient [yellow arrows in Fig. 1(c)].
These results should not be confused with valley

selective circular dichroism [36], as there are no absorption
processes involved here, or Pancharatnam-Berry phase
optical elements (which geometrically induce an optical
spin Hall effect [37]) since our LC microcavity does not
possess any cyclic parameters. Our results are also different
from the spin Hall effect of light, also coming from
geometric phases due to refractive index gradients [38],
which are negligible compared with the birefringence
induced by the LCs in our system. Moreover, since our
system is achiral (i.e., the x-z plane is a plane of symmetry)
there is no circular birefringence, contrary to chiral materi-
als like the Fresnel triprism [39]. A future path of inves-
tigation can then involve a quantum Stern-Gerlach
experiment operating in the single photon regime.
Finally, implementation of multiple spatially separated
incident optical beams given by their central coordinates
fr⃗1; r⃗2;…g introduces an additional external d.o.f. that
defines the beams’ location. Future photonic multi-d.o.f.
experiments combining coordinate (i.e., incident beam
central location), valley, and spin degrees of freedom
can be engineered, producing more complex in plane
polarization patterns as a result of interference.
In summary, we have investigated a liquid crystal-filled

optical cavity with equal Rashba and Dresselhaus SOC
contributions leading to SU(2) spin rotation symmetry [1].
An illustration of such symmetry is the emergence of the
persistent spin helix, previously shown only in electronic
systems [2,3]. This effect allows for fine control over the
spatial polarization state of the in plane cavity photons on
a micrometer scale. We have interpreted our observations
in the framework of inseparable degrees of freedom
played by the Rashba-Dresselhaus momentum valleys
and the photon spin. This has allowed us to establish a
reciprocal optical version of the famous Young’s double
slit experiment and the Stern-Gerlach experiment.
Because of the compact design liquid crystal microcavity
(LCMC) can be easily integrated with optoelectronics
devices, giving the perspective of simulating complex spin
systems, studying effects that are difficult to control in
condensed matter systems, and developing photonic
valleytronic devices in a relatively simple setting at room
temperature.
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